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Abstract. We have made a detailed study of the thermalization of positrons implanted into 
metals, using aluminium as an example. This is done by solving the Boltzmann equation for 
the positron momentum distribution in a homogeneous medium, allowing the positrons to 
scatter off electrons and phonons. We obtain both the time-dependent and steady-state 
solutions. The former gives the time evolution of the positron momentum distribution and 
the average energy and energy loss rate as functions of time after implantation. The full 
statistical description of the slowing-down process and the inclusion of both electron and 
phonon scattering mean that our energy loss rates are more accurate than earlier results, 
which are considerably lower than ours. The steady-state solution gives the momentum 
distribution from which positrons annihilate. Our formulation allows us to evaluate the 
influence of non-thermal trapping into defects, such as vacancies, on measurable parameters 
in positron experiments. The results show that, even if resonances are present in the 
momentum-dependent trapping rates, the differences between the results from the full 
calculation and for trapping from a thermal momentum distribution are exceedingly small. 
Thuswe conclude that non-thermal trapping is not important for positronstudies ofvacancies 
in metals. 

1. Introduction 

Positron annihilation is a well established non-destructive technique for studying defects 
[l-31. The advent of slow positron beams has, furthermore, in the last decade enabled 
defect profiling near surfaces and studies of surface phenomena 141. In a typical exper- 
iment, positrons are injected into the material under study either directly from a radio- 
active source (implantation energies peaking at -200 keV) or as a monoenergetic beam 
(energies from a few eV to -50 keV). Once injected, the positrons scatter elastically 
and inelastically off ion cores and conduction electrons, and within a picosecond reach 
energies of about 1 eV followed by a slower approach towards thermal equilibrium. On 
thermalization, the positrons diffuse until they (in bulk studies) either annihilate or are 
trapped at open volume defects, where they subsequently annihilate. In surface studies 
the surface acts as an additional sink for the positrons. Positron defect studies utilize the 
fact that the annihilation characteristics such as the lifetime and y-ray energy spectrum 
are different for positrons annihilating from the bulk compared to the strongly localized 
states formed in defects. It is an open question whether trapping prior to thermalization 
is important for the analysis of positron defect measurements and the extraction of 
defect parameters, e.g. vacancy formation energies. Our main aim of this paper is to 
answer this question by a detailed study of the thermalization process, using both 
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time-dependent and steady-state solutions of the Boltzmann equation for the positron 
momentum distribution. In addition to the data on non-thermal trapping, we also 
provide more general results for the positron slowing down and thermalization, such as 
energy loss rates. 

The influence of non-thermal trapping on the analysis of lifetime spectra has already 
been discussed by several authors [5-121 in relation to positron measurements on 
thermally generated defects. All these papers conclude that a sizeable fraction of posi- 
trons are trapped prior to thermalization and that this has to be accounted for when 
analysing the data. The results presented here contradict these findings, since we show 
that non-thermal trapping is not important for bulk studies of thermal vacancies, even 
if resonances exist in the trapping rate above thermal energy [13, 141. 

The slowing down and thermalization of positrons have been studied theoretically 
by many authors, e.g. [15-201. The results show that electron scattering is the dominant 
energy loss mechanism for positron energies above about 1 eV, while acoustic phonon 
scattering becomes increasingly important as the positron approaches thermal energies. 
In most cases [15,16, 18,201 the slowing-down processes have been described in terms 
of averaged scattering parameters such as the mean free path and the average energy 
loss rate. This approach ignores the fact that the positrons have an energy distribution 
of non-negligible width, which leads to considerably higher energy loss rates compared 
to when all positrons are assumed to have a single energy at a given time [17]. Only in 
.the case where phonon scattering is neglected, i.e. electron scattering only, has the 
slowing down been followed in detail by calculations of the time-dependent momentum 
distribution from the Boltzmann equation [17]. We go beyond earlier treatment in the 
present work by including both electron and phonon scattering in a formulation based 
on the Boltzmann equation. 

Our theory also allows us to calculate the momentum distribution from which the 
positrons annihilate, including the contribution of non-thermal annihilation. In simple 
metals this distribution can be deduced experimentally from ACAR (angular correlation 
of annihilation radiation) measurements [21 , 221. These experiments provide evidence 
for the rapid thermalization of positrons, since the distribution of annihilating positrons 
is observed to be a thermal distribution within experimental accuracy even for tem- 
peratures as low as 10 K. This result is confirmed by our calculations. We do predict 
significant non-thermal annihilation at very low temperatures, but the finite momentum 
resolution of ACAR means that the resulting difference between the annihilation dis- 
tribution and the thermal distribution is difficult to detect. 

We describe the Boltzmann equation, scattering mechanisms and how we find the 
steady-state and time-dependent distributions in section 2, present and discuss the 
results in section 3 and go further into the implications of our results in section 4. Section 
5 contains a brief set of conclusions. The asymptotic behaviour at long times is discussed 
briefly in the appendix. 

2. Theory 

2.1. Boltzmann equation and scattering mechanisms 

The thermalization of positrons is studied by solving the Boltzmann equation for the 
positron momentum distribution n(p ,  t )  in a homogeneous medium [17]: 

Here R(p ,  q )  d3q denotes the transition rate from momentum state fip to momenta in the 
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volume h3 d3q around hq; A is the annihilation rate, which is assumed to be independent of 
momentum since we consider only fairly low momenta [23]; and ~(p)  is the momentum- 
dependent trapping rate into defects. The term ni@,  t )  represents the external source of 
positrons. If more than one type of trap is present, K is a sum of individual trapping rates 
K,: K ( P )  = 2 i ~ i ( p ) .  We will in all cases assume that no detrapping occurs, i.e. trapped 
positrons are removed from the system and annihilate from a trapped state. It is also 
assumed that there is no explicit time dependence of the trapping rates, which has been 
shown by McMullen [24] to be a reasonable assumption for vacancies for which the rate- 
limiting process is the quantum-mechanical transition from the delocalized to the trapped 
state. This assumption no longer holds if trapping is also limited by the diffusion of 
positrons to the traps [25,26], as appears to be the case for large voids [27,28]. 

We will assume that the distribution is isotropic, n(p, t )  = n(p, t ) ,  and define the 
distribution of momentum magnitudesf(p, t )  and the relatedf,(p, t )  from 

f(P1 t )  = p 2 n ( p ,  4 
f;(p, t )  = p2n;0.' ,  t) .  

Equation (1) can then be simplified to 

d 
- - f ( P ,  d t  t> = j d q  K ( q , p ) f ( q ,  t> - H ( P ) f ( P ,  t )  +fl(P, 9. (3) 

The kernel K ( q ,  p ) ,  which accounts for scattering of positrons from states in the interval 
h d q  around hq into state hp,  is given by 

K ( q , p )  = P 2  j de ,  sin 6, j- dcp, R ( q , p )  (4) 

where 6, and cp, are the directional angles of q. The function H is the rate of loss of 
positrons from state p due to scattering, annihilation and trapping: 

H ( P )  = Hsc(P)  + A + K ( P )  ( 5 )  
with the scattering contribution given by 

(6) 

Since the slowing down of positrons to energies of the order of 10 eV is extremely rapid 
[16-18, 201 we need here only consider the processes at low positron energies. The 
dominant scattering mechanisms for positrons below 10 eV are acoustic phonon and 
conduction electron scattering [20]. Thus, 

R ( p ,  4)  = R p h  (P, 4)  + Rel(p, 4). 

Y 2  

+ UB(hcsk)6 (EA(k+p)  - E + ( p )  + ficsk)@(wD - c s k ) )  

( 7 )  
Phonon scattering is included in a Debye model [16,20]: 

Rph(q ,p)  =,Jlik{[vB(ficsk) + 116(E+(k  +PI - E + ( p )  - hcsk)@(oD - c s k )  

(8) 

where k = p - q,  cs is the sound velocity in the medium, oD is the Debye frequency, 
uB(E) = [exp(E/kBT) - 11-l is the Bose-Einstein distribution function, in which kB is 
the Boltzmann constant and T the absolute temperature, mh is the effective positron 
mass entering the nearly-free-particle expression assumed for the positron energy, 
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E+($) = h2p2/2m*, and y2 is the square of the positron-phonon coupling constant. We 
use a deformation potential approximation y 2  = E$,,/(2NMc,), where Eaef is the posi- 
tron deformation potential, N the atomic density and M the atomic mass of the solid. 
Equation (8) represents the positron-phonon interaction to lowest order in the phonon- 
positron coupling. McMullen [29] has demonstrated the validity of this approximation 
by comparing positron self-energies calculated with the lowest-order formula and a 
strong-coupling approach. The first term in equation (8) describes phonon emission and 
the second term phonon absorption. 

Conduction electron scattering is included in the random-phase approximation ( RPA) 
assuming a free-electron gas. Since we are interested in low positron energies and thus 
low energy and momentum transfers in each scattering event, we take the low-energy 
and low-momentum limit of the RPA also used by Woll and Carbotte [17]: 

[l - V F ( E - ( k f  4 -P>)17F(E-(k)) (9) 
where e is the electron charge, uo the Bohr radius, hk, the Fermi momentum, E , )  the 
vacuum permeability, E-(k)  = h2k2/2m the electron energy with m being the electron 
mass, and qF the Fermi function qF(E) = {eXp[(E - EF)/kBT] + I}-' where EF is the 
Fermi energy. It is well known that the RPA underestimates the positron-electron 
correlation at low energies, see e.g. [30]. Thus, equation (9) may underestimate the true 
scattering rates, see also [31,32]. However, as will be demonstrated below, the most 
important energy region in the context of thermalization and non-thermal trapping is 
below 1 eV where phonon scattering dominates. The primary role of the electron 
scattering is to slow the positron down to about 1 eV extremely rapidly, and quantitative 
inaccuracies in the description of this process give rise to only minor changes in the 
results to be presented in section 3. 

With the scattering rates described by equations (8) and (9) we have the following 
expressions for the scattering terms in the Boltzmann equation (3): 

i f ( ( p 2  + 2 m * ~ , k / h ) " ~ ,  t )  1 
exp(Tzc,k/kB T )  - 1 

x [ p j b '  d k  p2 + 2m*c,k/h k 2 ( l  + 
a i  

1 (10) 
b 2  f(b2 - 2m*c,k/h)'/*, t) k2 

a 2  
+ P J  dk p 2  - 2m*c,k/h exp(hc,k/kBT) - 1 

and 
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Here the integration limits in the phonon scattering integrals are 
a l  = max(0,2(m*cS/h - p) )  

b l  = min(w,/c,, 2(m*c,/h + p ) )  

a2  = O  

b2 = min[wD/cs, max(0,2(p - m*cs/h))]. 

As in [17] we neglect terms proportional to exp(-EF/kBT) in the electron scattering 
calculation. 

We have solved the Boltzmann equation, equation (3), for the cases where the 
positron source term,f,(p, t ) ,  is (i) a delta function in time and (ii) independent of time. 
These will be described in the following two subsections. In both cases the equation can 
be solved without any additional approximations. Thus, apart from the necessarily 
approximate description of the scattering rates, our solutions of the Boltzmann equation 
are exact to within the numerical accuracy. 

The parameters used in the calculations are for aluminium: EF = 11.7 eV, 
c, = 6.4 x lo3 m s-' [33], wD = 5.2 x 1013 s- '  (corresponding to a Debye temperature 
O D  = hwD/kB = 394 K) [34], N = 6.0 x lo2' m-3, M = 27m, (mp is the proton mass), 
Edef = -8.6eV [35] and A = 6.163 X lo's-' [7]. The effective positron mass m* is 
assumed equal to the electron mass m, but results for m* > m are briefly discussed at 
the end of section 3. 

2.2. Time-dependent momentum distributions 

Iffi is a delta function in time, i.e. 

f , ( P ,  0 = fl ( P M t )  
equation (3) describes the time development of the positron momentum distribution 
from the initial distribution f ,(p).  For zero trapping, ~ ( p )  = 0, the solution can be 
written in the form [ 171 

f ( P ,  t> = exp(-At)g@, 4 (13) 
where g(p,  t )  satisfies 

with the initial condition 

g(P, 0) = f l ( P ) *  (15) 
The stationary solution of this equation corresponding to large values oft is the Maxwell- 
Boltzmann distribution at the temperature of the system. Equation (14) was integrated 
numerically using a fourth-order Runge-Kutta method [36] from a given initial distri- 
bution. The calculations were performed on a mesh of typically 300 points, which was 
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updated regularly as t progressed to make the mesh cover only regions where g is 
significantly different from zero. The size of each time step in the Runge-Kutta inte- 
gration was adjusted to give a relative accuracy of g better than lop3 at all momenta. 
The calculations presented in section 3.1 required 500-800 time steps with this accuracy. 

Our calculations are similar to those of Woll and Carbotte [17] but we take into 
account both electron andphonon scattering. In a test calculation with electron scattering 
only and parameters identical to those of Woll and Carbotte [17] we obtained results in 
agreement with theirs. 

2.3. Steady-state momentum distributions 

Whenf,isindependentoft,f,(p, t )  = f i ( p ) ,  wegetasteadystatewithdfldt = 0. Equation 
(3) thus reduces to an integral equation forf(p)  = f ( p ,  t): 

We have solved this equation iteratively, starting from an initial guess flO1(p), and 
obtaining the ( n  + 1)th iterationf,,,,,] fromf,,,] using the prescription 

where the normalization factor p,, is evaluated fromfl,] using the equation 

which enforces particle conservation. The feedback parameter A in equation (17) 
controls how large a fraction of the new estimate forfis mixed into the previous estimate. 
It has been shown that the iterative prescription of equation (17) converges to the correct 
solution of equation (16) [37]. The method of [37] did not incorporate the update of the 
normalization factor y,,, equation (18), but we found that it stabilized the convergence. 
We also found that setting A = 1 in some cases led to a divergence of the iteration, 
presumably due to numerical inaccuracies. Setting A < 1 is equivalent to including a 
‘self-scattering’ term in the Boltzmann equation, i.e. a fictitious scattering process which 
leaves the positronstateunaltered, see [37,38]. We used avalue forA close to 1, typically 
0.8. We repeated the iterations until y,, was equal to its asymptotic value of 1.0 to within 
1 ppm. At  this point all other parameters, such as the average energy and trapping 
probabilities, were well converged. Convergence normally required a few hundred 
iterations on a typical mesh of 500 momentum points. 

The solution of equation (16) , f ( p ) ,  corresponds to the momentum distribution from 
which the positrons annihilate. This is, in the case of no trapping, related to the time- 
dependent momentum distribution g(p,  t) through the relation 

f ( P )  = 1 dtexP(-AMP> t )  (19) 

which was confirmed numerically. When traps are present, the influence of trapping on 
the momentum distribution [39] is automatically incorporated. 

The distribution of implanted positrons f i  was always normalized to correspond 
to one positron introduced per atomic unit of time (which is 2.42 x 1 O - l ’ ~ ) .  This 
normalization determines the absolute values of f ( p )  via 



Positron thermalization in metals 9763 

j dp [A + K(p)lf(p) = j dPfi(P) 

but does not affect any of the other calculated parameters. The integral off, 

corresponds to the total number of positrons present in the system at a given time and 
is determined through equation (20) by the influx of positrons and by the annihilation 
and trapping rates. Equation (20) is always obeyed by the solution to equation (16). 
However, numerical errors in the calculation of the scattering rates give rise to a 
difference between the right- and left-hand sides of the equation. Increasing the mesh 
point density decreases this difference. Accordingly, the number of mesh points was 
always chosen large enough for equation (20) to be obeyed to within an accuracy better 
than 1 % . 

The fraction of positrons trapped into traps of type i before annihilation is given by 

where 

N ,  corresponds to the relative intensity of the component due to traps of type i in 
an ACAR or Doppler broadening spectrum. It is less straightforward to calculate the 
corresponding intensities in lifetime spectra. If K depends on p ,  it will vary with time 
during the thermalization of the positron, which means that the lifetime spectrum in 
general will not be a sum of exponentials like that predicted by the simple trapping 
model in which constant trapping rates are assumed [40]. However, the deviations from 
this shape may not be detectable in actual lifetime measurements and the spectrum may 
be described, within statistical accuracy, by a sum of exponential components. One can 
obtain an estimate of the relative intensities Ii of the components corresponding to 
trapped positrons by using the standard trapping model result [40] but using the K, values 
from equation (22) for the individual trapping rates: 

where A! is the positron annihilation rate in traps of type i. From these intensities we can 
estimate the mean lifetime: 

We expect equations (23) and (24) to be reasonably accurate since, as will appear from 
the next section, the deviations from the simple trapping model results are very small in 
all cases considered in the present paper. 

3. Results 

3.1. Time-dependent momentum distributions 

Figure 1 shows a series of positron momentum distributions g(p ,  t) at different times 
calculated from equation (14) with both phonon and electron scattering active. The 
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000 005 010 015 020 025 030 035 040 

Figure 1. Positron momentum distributions in AI 
at 300K. The time after implantation in pico- 
seconds is indicated for each curve. The dis- 
tributions were obtained by solving the 
Boltzmann equation, equation (14), with both 

Momentum (a.u.) phonon and electron scattering included. 

initial distribution f l ( p )  was chosen as a narrow Gaussian centred at p = 0.857 au 
corresponding to an average energy of 10 eV. However, as shown by Woll and Carbotte 
[17], all memory of the starting distribution is rapidly lost as the scattering takes effect, 
and the distributions when the positrons approach thermalization are independent of 
the choice off,(p). The distribution shown in figure 1 all correspond to the regime where 
the effects of the initial distribution are no longer discernible. The distributions converge 
towards a thermal Maxwell-Boltzmann (MB) distribution as time increases, and the 
curve for t = 6.3 ps is virtually indistinguishable from the MB curve. It is clear from the 
figure that most of the time is spent with a distribution very close to the thermal 
distribution. The kinks observed in the curves at p = 0.213 au, which is half the Debye 
momentum, hkD = wD/cS, reflects the change in the behaviour of the upper limits of the 
phonon scattering integrals in equations (10) and (11) near this value of p .  

Figure 2 shows the average energy of the positrons as a function of time, evaluated 
from the momentum distributions: 

E(t)  = J dp (h2p2/2m*)g(p, t ) .  (25 )  

Panel (a)  of the figure shows results calculated with both phonon and electron scattering 
for different temperatures T. It is seen that I? for different values of Tis the same down 
to energies of about 0.3 eV, after which it approaches thermal energies, E,, = j kgT.  The 
dotted lines in the figure connect points on the curves corresponding to E = 1.1 x &,, 
1.01 X Ethand 1.001 X E t h ,  respectively. The corresponding times are tabulated in table 
1. Since E decreases asymptotically towards E t h  it is not possible to define a unique 
thermalization time, but the results in table 1 indicate how long it takes to reach near- 
thermal energies. The approach of ,?? to &, is very close to exponential in the range from 
2&h to E ( t )  - E t h  = constant x exp(-t/tE). This result is discussed in more detail 
in the appendix. The energy relaxation times tE at different temperatures are given in 
table 1. Note that the energy relaxation times are much higher than the scattering times 
(the inverse of the scattering rates), which are of the order of s [20]. This is because 
the small energy transfer in each positron-phonon scattering event means that many 
scattering events are required to reduce the positron energy significantly. 

Our calculations confirm the importance of phonon scattering in the final stages of 
thermalization [16, 18,201. In figure 2(b) E is compared for calculations with electron 
scattering only and with both electron and phonon scattering. The energy loss below 
about 1 eV is seen to be dominated by the phonon scattering. 
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scattering 

Electron and phonon 
scattering 

t 
0.001 0.01 0.1 1.0 10 100 0.001 0.01 0.1 1.0 10 100 

Time (ps) Time (ps) 
Figure 2. Mean energies .!?as a function of time after implanation for positrons slowing down 
in AI: (a)  at different temperatures with both phonon and electron scattering included; and 
( b )  at 300 K for either electron scattering only or both phonon and_ electron scattering. The 
dotted lines in ( a )  connect points on the curves corresponding to E = 1.1 x Eth. 1.01 x El,,. 
and 1.001 x Eth, respectively. 

Table 1. The times ti  and r ,  ,y)I taken to reach mean energies 1.1 x Eth, 1.01 x Eth and 
1.001 X Elhr respectively, for positrons slowing down at different temperatures. E,, is the 
thermal energyjk,T. Also shown is the relaxation time t E  corresponding to the exponential 
approach of the mean energy to Eth. 

r l  

Temperature (K) 

10 100 300 800 

tl I (PSI 34.6 7.4 3.01 0.95 
f l  01 (PS) 58.7 12.9 5.65 1.94 
f l  1x11 (PSI 83.5 18.4 8.38 2.98 

rE (PSI 10.5 2.4 1.2 0.44 

The rate of change of the mean energy dE/dt, obtained by numerical differentiation 
of the results for E(t) shown in figure 2, is plotted as a function of the mean energy E 
in figure 3. Panel ( b )  gives dE/dt at different temperatures while panel (a )  compares 
dE/dt to dE/dt defined by 

- = l d 3 q  d E  f i2(p2  - q 2 )  R(p, 4). 
dt 2m * 

This quantity, which should not be confused with dE/dt, is the average energy loss rate 
for a positron at a given momentum p .  There are two marked differences between the 
two curves in figure 3(a). Firstly, dE/dt approaches zero at E = 2kBTwhile dE/dt goes 
to zero at the true thermal energy $k,T; and, secondly, dE/dt lies significantly above 
dE/dt at all energies. Both effects have been pointed out in earlier work [16,17,20]. 
When electron scattering is dominant, dE/dt is a factor of nearly 3 higher than 
dE/dt [17], while the relative difference is smaller but still significant in the low- 
energy region dominated by phonon scattering. 

The distinction between dE/dt and dE/dt is important in studies of positron ther- 
malization and non-thermal trapping effects. Studies of these effects have so far mostly 



9766 K 0 Jensen and A B Walker 

0.05 0.10 0.50 1.00 0.001 0.010 0,100 1,000 

Energy (eV) Energy (eV) 

Figure 3. The time derivative of the mean energy dE/df plotted as a function of the mean 
energy E.  Panel ( a )  compares dE/df  for positrons thermalizing at 300 K with the average 
energy loss rate dE/df, calgulated from equation (26), plotted as a function of E = 

fi2p2/2m*. Panel ( b )  shows dE/dt for four different temperatures. 

been based on calculations of the positron slowing down by integrating dE/dt 
[6, 16,20,41]. This corresponds to assuming the positron momentum distribution to be 
a delta function (in momentum) at all times. Figure 3 shows that this underestimates the 
slowing-down rate and thus overestimates the thermalization time, and only if the 
statistical nature of the energy loss processes is considered does one obtain ther- 
malization of the positrons at the correct energy. This emphasizes the point made in the 
introduction that the full statistical description of the slowing-down process is necessary 
for accurate calculations of positron thermalization effects. 

The values for dE/dt (as distinct from dE/dt) are in excellent agreement with those 
of Nieminen and Oliva [20] who used the full RPA to calculate the positron-electron 
scattering. Hence our use of the low-energy and low-momentum limit of the RPA is 
adequate for the present work. 

3.2. Steady-state momentum distributions 

Below we present examples of calculated steady-state momentum distributions with and 
without trapping and at different temperatures. In all cases the source distributionfi(p) 
is a narrow Gaussian corresponding to an energy of 3 eV but the distributions in the 
momentum range shown in the figures are not influenced by the choice of f i  as long as 
the initial mean energy is higher than -2 eV. 

The steady-state distribution in the absence of trapping is compared to the Maxwell- 
Boltzmann distribution 

fMB(P) = CP2 exp(fi2p2/2m*kJ3 T )  (27) 
(C is a normalization constant) in figure 4. Results are shown for temperatures 10 and 
300 K. The figure shows that f ( p )  consists of a MB-like distribution with a tail of low 
intensity extending to high momenta. The tail represents positrons annihilating before 
thermalization. It is not possible to divide the distribution uniquely into thermal and 
non-thermal positrons. Attempts to subtract the MB contribution from f gave quite 
different results depending on the range used to matchf and the MB distribution when 
determining the relative intensity of the MB distribution. This is directly related to the 
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1 os 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.00 0.02 0.04 0.06 0.08 0.10 

Momentum (a.u.) Momentum (a.u.) 
Figure 4. Steady-state positron momentum distributions calculated from the Boltzmann 
equation at T = 300 K ( a )  and T = 10 K ( b ) ,  in both cases without any defect trapping. Also 
shown are the thermal Maxwell-Boltzmann distributions and the momentum distributions 
calculated by Hyodo et a1 [42], which include the effects of positron-phonon interactions. 
The curves in each panel are normalized to have the same total area. 

000 005 0 10 0 15 020 0 2 5  030 035 040 
Momentum (a.u.) 

FigureJ. Steady-state momentum distribution for 
different temperatures in the absence of defect 
trapping. 

fact mentioned above that there is no unique thermalization time since the positron 
momentum distribution reaches the MB distribution only in the asymptotic limit t -+ =. 
The kink infatp = 0.213 au reflects, like those seen in figure 1, the change in the phonon 
scattering nearp = kD/2 .  

The temperature dependence of f (p)  is illustrated in figure 5 .  It is seen that the tail 
is approximately independent of T but the fraction of positrons in the tail increases with 
decreasing temperature. The mean energy E of the steady-state distribution, 

is shown as a function of temperature in figure 6. At high temperatures E is extremely 
close to the thermal energy Et,, but the relative difference between the two increases 
with decreasing T .  However, only at very low temperatures, below SOK, is E sub- 
stantially higher than &. As T approaches zero, E converges towards a minimum of 
about 2 X eV corresponding to an effective temperature of 15 K. These results are 
in accordance with the ACAR results [21] within the experimental uncertainty and confirm 
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the conclusion of [21] that the positrons annihilate from a distribution close to a MB 
distribution even at low temperatures. Because of the finite angular resolution in ACAR 
the discrepancy between E and Et,, at low temperatures is difficult to detect since the 
absolute difference between the two is very small. 

Mechanisms other than non-thermal annihilation can give rise to tails in the positron 
momentum distribution. For example, the positron-phonon interaction gives rise to a 
p-* tail [42,43]. The momentum distributions for thermal positrons at 10 and 300 K,  
taking into account the dressing of the positron by phonons according to equation (a3) 
of [42], are shown in figure 4. The p-2 tail at 300 K has a significantly higher intensity 
than the tail due to non-thermals. At higher temperatures the difference between the 
two tails is greater than at 300 K while the non-thermal tail becomes more prominent 
than that due to the positron-phonon interaction at low temperatures below -100 K,  
as demonstrated by the T = 10 Kresults in figure 4(b). The presence of thep-’tail means 
that the non-thermal tail will be difficult to observe directly by bulk positron techniques 
such as ACAR. 

Hyodo et a1 [22] have made a detailed analysis of ACAR spectra for potassium at 
temperatures above 91 K using the theoretical positron momentum distribution of [42] 
including the p-* tail. We have confirmed that this p-2 tail is considerably larger than 
the non-thermal tail at all temperatures considered by Hyodo et a1 by solving the 
Boltzmann equation for potassium. Thus, the neglect of non-thermal effects in [22] is 
justified. 

The effects of trapping on the steady-state distribution are illustrated in figure 7. The 
trapping rate K is given by K = pC where C is the defect concentration and ,U is the 
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specific trapping rate. We have used the (momentum-dependent) specific trapping rate 
p," calculated by Puska and Manninen 1141 for monovacancies in A l .  This trapping rate 
has a strong maximum at a positrun energy of about 2 eV due to resonance trapping. 
Figure 7 shows results for three different total trapping rates corresponding to different 
defect concentrations. The presence of traps leaves the tail of the momentum distribution 
essentially unaffected but depletes the thermal part due to the removal of positrons by 
trapping. As shown in figure 8, this leads to an increase in E with increasing trapping 
rate. 

Figure 9 demonstrates the effects of non-thermal trapping on the trapping probability 
by comparing the results calculated from equation (21) with those obtained for thermal 
trapping, i.e. the trapping probability for positrons with a thermal Maxwell-Boltzniann 
momentum distribution. The figure shows the variation with temperature for a given 
trapping rate. The relative enhancement of the trapping due to non-thermal trapping is 
in all cases only a fraction of a per cent. Similar results were found for all systems that 
produced the results in figure 8, i.e. varying the trapping rate at a fixed temperature. 
The results lead to the immediate conclusion that non-thermal trapping has very little 
effect on the trapping probability for monovacancies. This result is valid not only €or the 
trapping probability but also for the lifetime intensity, calculated from equation (23). ?he 
results show that ~ although the trapping rates for non-thermal energies are significantly 
higher than thermal trapping rates, the positron thermalization is too fast for non- 
thermal trapping to have an appreciable effect on the measurable parameters. 

This conclusion holds even when a trapping resonance exists at near-thermal 
energies. This is demonstrated by the results calculated for the trapping probability into 
divacancies shown in figure 10 (a defect population consisting of divacancies only is 
probably unlikely in reality but it provides a convenient example of a trapping rate with 
a low-energy resonance). We have used the specific trapping rate pzv from [14], which 
has a resonance peak around 0.1 eV and exhibits a much larger energy variation in the 
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thermal energy range than plV. Despite this fact the figure shows that non-thermal 
trapping is unimportant even in this case. 

We have also calculated the effects of non-thermal trapping on positron studies of 
thermal defects. Two different choices have been employed for the defect populations. 
The results of Fluss et a1 [44] indicate a significant contribution of divacancies to the 
trapping rate at high temperatures. However, the results of Jackman et a1 [7] appear to 
contradict this finding, and theoretical estimates of the binding energy of divacancies in 
A1 [45] suggest that divacancies are only weakly bound and therefore unlikely to exist 
in significant concentrations at high temperatures. Because of this controversy we have 
performed calculations when both mono- and divacancies are included and for a defect 
population consisting of monovacancies alone. The concentrations were evaluated as 

with n = 1 and n = 2 denoting mono- and divacancies, respectively. In the first set of 
calculations we used formation enthalpies of HI, = 0.66 eV and H2V = 1.02 eV [44] and 
entropies SIV/kB = 1.3 [44] and SZv/kB = 3.8. We have adjusted S2v to correspond to 
,u2V/plv = 10, approximately the value predicted at high temperatures by Puska and 
Manninen 1141. Fluss et u1 [44] obtained S2,/kB = 5.6 assuming p2v /~1v  = 2. None of 
the qualitative conclusions in the following are affected by which of the two values of 
&/kB is used. In the second set of calculations we chose Hlv = 0.71 eV and SIV/kB = 
1.23 according to the results of Jackman et a1 [7], and no divacancies were included. 

Table 2 presents the calculated trapping probabilities for thermal defects at different 
temperatures and compares the probabilities obtained from the full calculation with 

C , Z V ( ~ )  = exp(SnV/kB) exp(-HnV/kB (29) 
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Table 2. Trapping probabilities N I  and N 2  into thermally generated mono- and divacancies, 
respectively, at different temperatures. Results are given both for purely thermal trapping 
and from the full calculation using the Boltzmann equation, which includes the effect of non- 
thermal trapping. Also shown are mean lifetimes 5, evaluated from equation (24). The top 
half of the table gives the results when both mono- and divacancies are present [8], while in 
the bottom half only monovacancies are included [7]. 

Full calculation Thermal trapping 
Defect 
population T(K)  N I ( % )  N2(%)  .,(Ps) N , ( % )  N , ( % )  T , ( P ~ )  

Mono- and 500 5.85 
divacancies 600 43.4 

700 69.2 
800 63.6 
900 53.5 

Monovacancies 500 1.80 
only 600 22.8 

700 68.6 
800 90.9 
900 97.1 

0.14 167.6 5.84 
4.11 200.8 43.3 

17.8 235.5 69.0 
33.5 248.2 62.8 
43.8 253.6 50.4 

164.4 
180.6 
215.8 
233.0 
237.7 

0.14 
4.11 

17.9 
34.3 
48.8 

1.79 
22.8 
68.5 
90.8 
97.0 

167.6 
200.8 
235.4 
248.3 
254.5 

164.4 
180.5 
215.7 
232.9 
237.6 

those obtained without any non-thermal trapping. We also present values for the mean 
lifetimes calculated from equation (24) assuming A, = 4.167 ns-' and A2 = 3.690 ns-' 
[7]. The difference between the two sets of results (full calculation versus thermal 
trapping) is seen to be extremely small for both choices of defect population. The results 
thus imply that non-thermal trapping effects do not affect the determination of vacancy 
formation parameters to any significant degree. 

The ACAR results by Hyodo et a f  [42] indicate that m* for A1 is about 1.3 instead of 
the value of 1 employed in the present calculations. We did additional calculations with 
m* = 1.3 to confirm that the choice of m* does not affect any of the conclusions. The 
difference between I? and Eth was found to be up to 30% lower for m* = 1.3 than for 
m* = 1, with the values at low temperatures showing the strongest dependence on m+. 
Reductions of similar magnitude were also found for the enhancement of the trapping 
probabilities compared to purely thermal trapping. Thus, setting m* greater than m 
would lead to an even smaller influence of non-thermal positrons than indicated by the 
results presented in the figures and tables. 

4. Discussion 

The results presented in this paper argue strongly in favour of the use of the conventional 
trapping model (CTM) for obtaining defect parameters in positron defect studies. Our 
rationale is that measurable deviations from the CTM will occur only if the trapping rate 
and/or annihilation rate deviate from the thermal rate for a sufficient fraction of the 
thermalization period. Because of the asymptotic approach to thermal equilibrium, 
there is in principle no clear-cut distinction between thermal and non-thermal positrons 
and in practice we have shown that the positron spends most of the thermalization period 
with a momentum distribution close to the thermal Maxwell-Boltzmann distribution. 
We have been able to take this fact into account by calculating the effects of trapping 
directly from the full positron momentum distribution without an artificial separation 
of non-thermals from thermals. 
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The analysis of non-thermal trapping by Warburton and Shulman [ 5 ]  is consistent 
with the CTM in the limit where the non-thermal trapping rate is equal to the thermal 
rate. However, in the paper by Sharma et a1 [9] and some of the later applications and 
generalizations [6-8, 10-121 it is implicitly assumed that positrons can get trapped but 
not annihilate during the thermalization period. This assumption leads to predicted 
departures from the CTM even for energy independent trapping rates, and the consistency 
with the CTM, referred to above, is no longer present. It also results in an overestimate 
of the effects of non-thermal trapping, which partially explains why earlier work has 
predicted a much larger influence of non-thermal trapping than that presented here. 
Another important difference between the present and earlier work is the positron 
thermalization is significantly more rapid when using a full description of the time- 
dependent positron momentum distribution compared to models based on average 
energy loss rates (see figure 3 and associated discussion above). 

Experimental results for a number of metals [7-121 have indicated deviations from 
the CTM, attributed to trapping of non-thermal positrons, when thermal vacancies act as 
positron traps. However, these deviations appear not always to be reproducible [46- 
491, and our results imply that, if the effect is real, explanations other than non-thermal 
trapping must be considered. 

Although the present results indicate that non-thermal effects are unimportant for 
bulk positron studies of vacancies in metals, it is still possible to envisage situations 
where non-thermal trapping may play a significant role. Since the energy region immedi- 
ately above thermal energy is the most important for non-thermal trapping, a large 
energy variation of the trapping rate at near-thermal energies can lead to non-thermai 
effects larger than those described above. An example is trapping into iarge voids at low 
temperatures for which the thermal trapping rate has been predicted to go to zero as the 
temperature goes to zero [50], while experimentally a significant fraction of positrons 
are found to be trapped even at temperatures below 10 K,  see, e.g., [27,28]. Non- 
thermal trapping is a possible explanation for this apparent discrepancy, as will be 
discussed in detail in a separate publication [51]. 

Another example where non-thermal trapping might be significant could be trapping 
by defects in semiconductors, especially positively charged defects, since the positron 
has to tunnel through the potential barrier surrounding the defect to get trapped, which 
leads to a very strong temperature dependence of the trapping rate [52]. Depending on 
the height of the barrier a significant fraction of positrons may also be trapped at energies 
at which it is possible to surmount the barrier, which could imply that nearly all trapping 
into positive defects would be due to non-thermalized positrons. 

Non-thermal trapping can also be important if there is a strong sink in the system 
removing a large fraction of positrons while they are still at non-thermal energies. This 
situation is encountrered, for example, when positrons are implanted using a low-energy 
positron beam since the time spent before returning to the sample surface can be short, 
-0.1-1 ps, compared to thermalization times. We can simulate the presence of a surface 
by replacing the true annihilation rate A by a high effective removal rate ACff r  representing 
loss of positrons through the surface, in the steady-state Boltzmann equation for positron 
momentum transport, equation (16). ForAeff = s-' (= l/(O.l ps)) we find that about 
7% of the positrons get trapped in thermal defects at 850 K (including both mono- and 
divacancies in the defect population). For thermal positrons only about 3% would be 
trapped for this value of Lff. For Aeff = lo1* s - l ( =  1/( 1 ps)) the trapped fraction is about 
33%. For thermal positrons about 30% would get trapped. Thus even if the positrons 
only stay in the sample for 0.1-1 ps and do not have time to thermalize, a substantial 
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fraction of the positrons may still be trapped, as has been observed experimentally in 
the positron beam experiments by Nielsen et a1 [53]. To study positron slowing down 
and trapping near a surface in detail one has to consider the coupled spatial and 
momentum transport with the proper surface boundary condition [19]. Work is under 
way to include spatial transport in the Boltzmann equation. We therefore defer further 
discussion of positron beam experiments to a later article [54]. 

5. Conclusion 

We have presented a comprehensive study of the energy loss and thermalization of 
positrons in metals. We solved the Boltzmann equation for the positron momentum 
distribution including both positron-electron and positron-phonon scattering. 

The calculated energy loss rates are greater than those presented by Nieminen and 
Oliva [20] and Perkins and Carbotte [16] by a factor of 2-3 because we take into account 
the fact that the positrons have an energy distribution of finite width. 

Our results conclusively show that, unless the positron trapping rates into vacancy- 
type defects have much stronger resonances than calculated so far, non-thermal trapping 
has only a very minor influence on the measurable parameters and cannot lead to major 
deviations from the conventional trapping model. 

Finally, we showed that non-thermal annihilation has a negligible effect on ACAR 
spectra except at very IOW temperatures. 
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Appendix 

In this appendix we examine the long-time behaviour of the positron momentum dis- 
tribution g(p ,  t ) ,  cf. equation (14), and show that the approach of the mean energy E(t )  
to E,, is exponential in this limit. In practice our numerical solutions to the Boltzmann 
equation (14) show that this limit applies when E is below 2Eth. 

Our analysis is based on that given in [55 ]  for transport in gases. It is useful to define 
a deviation function Y from 

g ( p ,  Q = ~ M B  ( P X ~  + Y ( p j  t>l  (A11 

aY/at = LY (A21 

where fMn is the Maxwell-Boltzmann distribution, equation (27). The Boltzmann 
equation can be written in terms of Y as 

where L is a linear operator representing the scattering terms. Separating variables t 
andp and setting Y ( p .  t )  = h(p)a(t) one finds that a general solution to equation (A2) 
can be written 

W P ,  t> = exP(-vlt)h,(p) (A3) 

L,h, == --v,h,. (-44) 

where h,(p) is an eigenfunction of L with eigenvalue - ql ( q1 2 0): 

L is Hermitian [ S S ]  because the positron is coupled to a bath of thermal phonons and 
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electrons. Thus, the functions hi form a complete orthogonal set and a general solution 
to equation (A2) can be written: 

with the coefficients A, determined by the initial distribution. Thus, the asymptotic 
behaviour as t -+ is 

W P ,  t )  = Aoho(P) exp(-vot) f +  x (4 
where q o  is the smallest eigenvalue of L .  From equations (Al) ,  (A6) and (25) it follows 
that 

E - E ~ , ,  = constant x exp(--t/tE) t+a (A7) 
where tE = l /qo,  as observed-see section 3.1. The complicated form of L means that 
it is not possible to find a closed-form expression for tE since this would involve solving 
the eigenvalue equation (A4). 
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